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(a) 3D Diffusion Policy (DP3) vs. Diffusion Policy: Better, Faster, Stronger. (b) We evaluate DP3 in diverse simulated and real tasks.
Fig. 1: 3D Diffusion Policy (DP3) is a universal visual imitation learning algorithm that marries 3D visual representations with diffusion
policies, achieving surprising effectiveness in diverse simulated and real-world tasks, including both high-dimensional and low-dimensional
control tasks, with a practical inference speed.

Abstract—Imitation learning provides an efficient way to teach
robots dexterous skills; however, learning complex skills robustly
and generalizablely usually consumes large amounts of human
demonstrations. To tackle this challenging problem, we present
3D Diffusion Policy (DP3), a novel visual imitation learning ap-
proach that incorporates the power of 3D visual representations
into diffusion policies, a class of conditional action generative
models. The core design of DP3 is the utilization of a compact
3D visual representation, extracted from sparse point clouds
with an efficient point encoder. In our experiments involving
72 simulation tasks, DP3 successfully handles most tasks with
just 10 demonstrations and surpasses baselines with a 24.2%
relative improvement. In 4 real robot tasks, DP3 demonstrates
precise control with a high success rate of 85%, given only 40
demonstrations of each task, and shows excellent generalization
abilities in diverse aspects, including space, viewpoint, appear-
ance, and instance. Interestingly, in real robot experiments,
DP3 rarely violates safety requirements, in contrast to baseline
methods which frequently do, necessitating human intervention.
Our extensive evaluation highlights the critical importance of 3D
representations in real-world robot learning. Videos, code, and
data are available on 3d-diffusion-policy.github.io.

I. INTRODUCTION

Imitation learning provides an efficient way to teach robots
a wide range of motor skills, such as grasping [69, 61,
83], legged locomotion [42], dexterous manipulation [1, 17,
11], humanoid loco-manipulation [55], and mobile manipu-

lation [58, 13]. Visual imitation learning, which takes high-
dimensional visual observations such as images or depth maps,
eases the need for task-specific state estimation and thus gains
the popularity [10, 61, 83, 12, 21].

However, the generality of visual imitation learning comes
at a cost of vast demonstrations [17, 10, 12]. For example, the
state-of-the-art method Diffusion Policy [10] necessitates 100
to 200 human-collected demonstrations for each real-world
task. To collect the required extensive number of demonstra-
tions, the entire data-gathering process can span several days
due to its long-horizon nature and failure-prone process. One
solution is online learning [17], where the policy continues to
evolve through interaction with environments and a learned
reward function from expert demonstrations. Nevertheless,
online learning in real-world scenarios introduces its own
challenges, such as safety considerations, the necessity for
automatic resetting, human intervention, and additional robot
hardware costs. Therefore, how to enable (offline) imitation
learning algorithms to learn robust and generalizable skills
with as few demonstrations as possible is a fundamental
problem, especially for practical real-world robot learning.

To tackle this challenging problem, we introduce 3D Dif-
fusion Policy (DP3), a simple yet effective visual imitation
learning algorithm that integrates the strengths of 3D visual
representations with diffusion policies. DP3 encodes sparsely
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sampled point clouds into a compact 3D representation using
a straightforward and efficient MLP encoder. Subsequently,
DP3 denoises random noise into a coherent action sequence,
conditioned on this compact 3D representation and the robot
poses. This integration leverages not only the spatial under-
standing capabilities inherent in 3D modalities but also the
expressiveness of diffusion models.

To comprehensively evaluate DP3, we have developed a
simulation benchmark comprising 72 diverse robotic tasks
from 7 domains, alongside a real-world benchmark containing
4 challenging manipulation tasks. Our extensive experiments
demonstrate that although DP3 is conceptually straightfor-
ward, it exhibits several notable advantages over 2D-based
diffusion policies and other baselines:

1) Efficiency & Effectiveness. DP3 not only achieves
superior accuracy but also does so with significantly
fewer demonstrations and fewer training steps.

2) Generalizability. The 3D nature of DP3 facilitates gen-
eralization capabilities across multiple aspects: space,
viewpoint, instance, and appearance.

3) Safety. An interesting observation in our real-world
experiments is that DP3 seldom gives erratic commands
in real-world tasks, unlike baseline methods which often
do and exhibit unexpected behaviors, posing potential
damage to the robot hardware.

We conduct several analyses of our 3D visual represen-
tations. Intriguingly, we observed that while other baseline
methods, such as BCRNN [37] and IBC [12], benefit from
the incorporation of 3D representations, they do not achieve
enhancements comparable to DP3. Additionally, DP3 consis-
tently outperforms other 3D modalities, including depth and
voxel representations, and surpasses other point encoders like
PointNeXt [47] and Point Transformer [85]. These ablation
studies highlight that the success of DP3 is not just due to
the usage of 3D visual representations, but also because of its
careful design.

DP3 emphasizes the power of marrying 3D representations
with diffusion policies in real-world robot learning. Videos,
code, and data are available on 3d-diffusion-policy.github.io.

II. RELATED WORK

A. Diffusion Models in Robotics
Diffusion models, a category of generative models that

progressively transform random noise into a data sample, have
achieved great success in high-fidelity image generation [24,
64, 52, 63]. Owing to their impressive expressiveness, diffu-
sion models have recently been applied in robotics, including
in fields such as reinforcement learning [71, 2], imitation
learning [10, 41, 51, 73, 65], reward learning [26, 39], grasp-
ing [72, 67, 62], and motion planning [53, 28]. In this work,
we focus on representing visuomotor policies as conditional
diffusion models, referred to as diffusion policies, following
the framework established in [10, 41]. Unlike prior methods
that primarily focus on images and states as conditions,
we pioneer in incorporating 3D conditioning into diffusion
policies.

B. Visual Imitation Learning

Imitation learning offers an efficient way for robots to
acquire human-like skills, typically relying on extensive
observation-action pairs from expert demonstrations. Given the
challenges in accurately estimating object states in the real
world, visual observations such as images have emerged as
a practical alternative. While 2D image-based policies [40,
12, 10, 37, 17, 57, 69, 16] have predominated the field, the
significance of 3D is increasingly recognized [61, 83, 81, 15,
14, 30, 70].

Recent 3D-based policies, including PerAct [61], GNFac-
tor [83], RVT [15], ACT3D [14], NeRFuser [75], and 3D
Diffuser Actor [30], have demonstrated notable advancements
in low-dimensional control tasks. However, these works face
two primary challenges: (1) Impractical setting. These meth-
ods convert the imitation learning problem into a prediction-
and-planning paradigm using keyframe pose extraction. While
effective, this formulation is less suitable for high-dimensional
control tasks. (2) Slow inference. The intricate architectures
of these methods result in slow inference speeds. For instance,
PerAct [61] runs at an inference speed of 2.23 FPS, and 3D
Diffuser Actor [30] at 1.67 FPS, making them hard to address
tasks that require dense commands, such as highly dynamic
environments. Compared to this line of works, we endeavor
to develop a universal and fast 3D policy capable of tackling
a broader spectrum of robotic tasks, encompassing both high-
dimensional and low-dimensional control tasks.

C. Learning Dexterous Skills

Achieving human-like manipulation skills in robots has
been a longstanding objective pursued by robotics researchers.
Reinforcement learning has been a key tool in this en-
deavor, enabling robots with dexterous hands to master a
variety of tasks, such as pouring water [48, 82], opening
doors [50, 22, 8], rotating objects [45, 77, 79, 46], reorienting
objects [19, 7, 6], spinning pens [35], grasping tools [1],
executing handovers [84, 25], building Legos [9], and wiping
plates [70]. Imitation learning offers another pathway, with
approaches like DIME [3] and DexMV [48] translating human
hand movements into robotic actions through retargeting and
enabling learning from human videos. Our work, however, di-
verges from these specific design-centric methods. We demon-
strate that enabling the acquisition of these complex skills with
minimal demonstrations could be achieved by improving the
imitation learning algorithm itself.

III. METHOD

Given a small set of expert demonstrations that contain
complex robot skill trajectories, we want to learn a visuomotor
policy π : O 7→ A that maps the visual observations o ∈ O
to actions a ∈ A, such that our robots not only reproduce
the skill but also generalize beyond the training data. To this
end, we introduce 3D Diffusion Policy (DP3), which mainly
consists of two critical parts: (a) Perception. DP3 perceives
the environments with point cloud data and processes these
visual observations with an efficient point encoder into visual
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Fig. 2: Overview of 3D Diffusion Policy (DP3). Above: In the training phase, DP3 simultaneously trains its perception module
and decision-making module in an end-to-end manner using expert demonstrations. During evaluation, DP3 determines actions
based on visual observations from the environment. Below: DP3 perceives its environment through single-view point clouds.
The sparsely sampled point clouds are encoded into compact 3D representations by a lightweight MLP encoder. Subsequently,
DP3 generates actions conditioning on these 3D representations and the robot states, using a diffusion model as the backbone.

features; (b) Decision. DP3 utilizes the expressive Diffusion
Policy [10] as the action-making backbone, which generates
action sequences conditioning on our 3D visual features. An
overview of DP3 is in Figure 2. We will detail each part in
the following sections.

A. A Motivating Example

To better illustrate the generalization ability of DP3, we first
give a straightforward example. We use the MetaWorld Reach
task [78] as our testbed. In this task, the goal is for the gripper
to accurately reach a designated target point. To evaluate
the effectiveness of imitation learning algorithms in not only
fitting training data but also generalizing to new scenarios, we
visualize the • training points and the • successful evaluation
points in 3D space, as shown in Figure 3. We observe that
with merely five training points, DP3 reaches points distributed
over the 3D space, while for 2D-based methods, Diffusion
Policy [10] and IBC [12] learn to reach within a plane-like
area, and BCRNN [37] fails to cover the space. This example
demonstrates the superior generalization and efficiency of
DP3, particularly in scenarios where available data is limited.

B. Perception

We now detail the perception module in DP3. DP3 focuses
on only utilizing a single-view camera for policy learning for
all the tasks, which is different from previous works [10, 19]
that set up multiple cameras around robots. This is primarily
chosen for its practical applicability in real-world tasks.

Representing 3D scenes with point clouds. The 3D
scene could be represented in different ways, such as RGB-
D images, point clouds, voxels [7], implicit functions [38],
and 3D gaussians [31]. Among them, DP3 uses sparse point
clouds as the 3D representation. As evidenced in our ablations
(see Table IV), point clouds are found to be more efficient

BC-RNN Diffusion Policy DP3

Train
Test

Train Train
Test

Train
Test

IBC

Fig. 3: Generalization in 3D space with few data. We use
MetaWorld Reach as an example task, given only 5 demonstra-
tions (visualized by •). We evaluate 1000 times to cover the
3D space and visualize the • successful evaluation points. DP3
learns the generalizable skill in 3D space; Diffusion Policy
and IBC [12] only succeed in partial space; BC-RNN [37]
fails to learn such a simple skill with limited data. Number of
successful trials from left to right: 0 / 285 / 327 / 415.

compared to other explicit representations, such as RGB-D,
depth, and voxels.

For both simulation and the real world, we obtain depth
images with size 84 × 84 from a single camera. We then
convert depth into point clouds with camera extrinsics and
intrinsics. We do not use color channels for better appearance
generalization.

Point cloud processing. Since the point clouds converted
from depth may contain redundant points, such as points from
the table and the ground, we crop out these points and only
leave points within a bounding box.

We further downsample points by farthest point sampling
(FPS, [43]), which helps cover the 3D space sufficiently and
reduces the randomness of point cloud sampling, compared to
uniform sampling. In practice, we find downsampling 512 or
1024 points is sufficient for all the tasks in both simulation
and the real world.

Encoding point clouds into compact representations. We
then encode point clouds into compact 3D representations



TABLE I: Main simulation results. Averaged over 72 tasks, DP3 achieves 24.2% relative improvement compared to Diffusion
Policy, with a smaller variance. Success rates for individual tasks are in Appendix C.

Adroit Bi-DexHands DexArt DexDeform DexMV HORA MetaWorld MetaWorld MetaWorld MetaWorld Average
Algorithm \ Task (3) (6) (4) (6) (2) (1) Easy (28) Medium (11) Hard (6) Very Hard (5) (72)

DP3 68.3 70.2 68.5 87.8 99.5 71.0 90.9 61.6 31.7 49.0 74.4±29.9 (↑ 24.2%)
Diffusion Policy 31.7 61.3 49.0 90.5 95.0 49.0 83.6 31.1 9.0 26.6 59.8±35.9

TABLE II: Comparing DP3 with more baselines in simulation. We include IBC, BCRNN, and their 3D variants, termed as
IBC+3D and BCRNN+3D. The 3D variants use our DP3 Encoder for a fair comparison.

Adroit MetaWorld DexArt
Algorithm \ Task Hammer Door Pen Assembly Disassemble Stick-Push Laptop Faucet Toilet Bucket Average

DP3 100±0 62±4 43±6 99±1 69±4 97±4 83±1 63±2 82±4 46±2 74.4
Diffusion Policy 48±17 50±5 25±4 15±1 43±7 63±3 69±4 23±8 58±2 46±1 44.0
BCRNN 0±0 0±0 9±3 3±4 32±12 45±11 3±3 1±0 5±5 0±0 9.8
BCRNN+3D 8±14 0±0 8±1 1±5 11±6 0±0 29±12 26±2 38±10 24±11 14.5
IBC 0±0 0±0 9±2 0±0 1±1 16±2 3±2 7±1 14±1 0±0 5.0
IBC+3D 0±0 0±0 10±1 18±9 3±5 50±6 1±1 7±2 15±1 0±0 10.4

with a lightweight MLP network, as shown in Figure 2. The
network, termed as DP3 Encoder, is conceptually simple: it
consists of a three-layer MLP, a max-pooling function as an
order-equivariant operation to pool point cloud features, and a
projection head to project the features into a compact vector.
LayerNorm layers are interleaved to stabilize training [23].
The final 3D feature, denoted as v, is only 64 dimension.
As shown in our ablation studies (see Table V), this simple
encoder could even outperform pre-trained point encoders
such as PointNeXt [47], aligning with observations from [21],
where a properly designed small encoder is better than pre-
trained large encoders in visuomotor control tasks.

C. Decision

Conditional action generation. The decision module in
DP3 is formulated as a conditional denoising diffusion
model [24, 10, 41] that conditions on 3D visual features v
and robot poses q, then denoises a random Gaussian noise
into actions a. Specifically, starting from a Gaussian noise aK ,
the denoising network ϵθ performs K iterations to gradually
denoise a random noise aK into the noise-free action a0,

ak−1 = αk

(
ak − γkϵθ

(
ak, k, v, q

))
+ σkN (0, I) , (1)

where N (0, I) is Gaussian noise, αk, γk, and σk are functions
of k and depend on the noise scheduler. This process is also
called the reverse process [24].

Training objective. To train the denoising network ϵθ, we
randomly sample a data point a0 from the dataset and do a
diffusion process [24] on the data point to get the noise at
k iteration ϵk. The training objective is to predict the noise
added to the original data,

L = MSE
(
ϵk, ϵθ(ᾱka

0 + β̄kϵ
k, k, v, q)

)
, (2)

where ᾱk and β̄k are noise schedule that performs one step
noise adding [24].

Implementation details. We use the convolutional network-
based diffusion policy [10]. We use DDIM [63] as the noise
scheduler and use sample prediction instead of epsilon predic-
tion for better high-dimensional action generation, with 100
timesteps at training and 10 timesteps at inference. We train
1000 epochs for MetaWorld tasks and 3000 epochs for other

simulated and real-world tasks, with batch size 128 for DP3
and all the baselines.

IV. SIMULATION EXPERIMENTS

A. Experiment Setup

Simulation benchmark. Though the simulation environ-
ments are increasingly realistic nowadays [36, 74, 66, 86],
a notable gap between simulation and real-world scenarios
persists [81, 32, 7]. This discrepancy underscores two key as-
pects: (a) the importance of real robot experiments and (b) the
necessity of large-scale diverse simulation tasks for more sci-
entific benchmarking. Therefore, for simulation experiments,
we collect in total 72 tasks from 7 domains, covering diverse
robotic skills. These tasks range from challenging scenarios
like bi-manual manipulation [8], deformable object manipula-
tion [33], and articulated object manipulation [5], to simpler
tasks like parallel gripper manipulation [78]. These tasks
are built with different simulators including MuJoCo [66],
Sapien [74], IsaacGym [36], and PlasticineLab [27], ensuring
our benchmarking is not limited by the choice of simulator.
Tasks in MetaWorld [78] are categorized into various difficulty
levels based on [56]. A brief overview is shown in Table III.
The 3D observations are visualized in Figure 4.

Fig. 4: 3D visual observations in simulation. We sample
some simulated tasks and show the downsampled point clouds
in these tasks.

Expert demonstrations. Human-teleoperated data is used
in DexDeform; Script policies are used in MetaWorld; Tra-
jectories for other domains are collected with agents trained
by reinforcement learning (RL) algorithms, where we use



TABLE III: Task suite of DP3, including Adroit [50], Bi-
DexHands [8], DexArt [5], DexDeform [33], DexMV [48],
HORA [45], MetaWorld [78], and our real robot tasks. ActD:
the highest action dimension for the domain. #Demo: Number
of expert demonstrations used for each task in the domain.
Art: articulated objects. Deform: deformable objects.

Simulation Benchmark (72 Tasks)

Domain Robo Object Simulator ActD #Task #Demo

Adroit Shadow Rigid/Art MuJoCo 28 3 10
Bi-DexHands Shadow Rigid/Art IsaacGym 52 6 10
DexArt Allegro Art Sapien 22 4 100
DexDeform Shadow Deform PlasticineLab 52 6 10
DexMV Shadow Rigid/Fluid Sapien 30 2 10
HORA Allegro Rigid IsaacGym 16 1 100
MetaWorld Gripper Rigid/Art MuJoCo 4 50 10

Real Robot Benchmark (4 Tasks)

Task Robo Object ActD #Demo Description

Roll-Up Allegro Deform 22 40 Wrap plasticine to make a roll-up
Dumpling Allegro Deform 22 40 Wrap plasticine and pinch with fingers
Drill Allegro Rigid 22 40 Grasp the drill and touch the cube
Pour Gripper Rigid 7 40 Pick the bowl, pour, and place

VRL3 [68] is used for Adroit; BAC [29] is used for Meta-
World; PPO [54] is used in all other domains. We generate
successful trajectories with RL agents and ensure all imitation
learning algorithms are using the same demonstrations. The
success rates for experts are given in Appendix C.

Baselines. The primary focus of this work is to underscore
the significance of the 3D modality in diffusion policies. To
this end, our main baseline is the image-based diffusion pol-
icy [10], simply referred to as Diffusion Policy. Additionally,
we incorporate comparisons with IBC [12], BCRNN [37],
and their 3D variations. However, given that these algorithms
showed limited effectiveness in our challenging tasks, we eval-
uate them on only 10 tasks (see Table II). We emphasize that
the image and depth resolution for all 2D and 3D methods are
the same across all experiments, ensuring a fair comparison.

Evaluation metric. We run 3 seeds for each experiment
with seed number 0, 1, 2. For each seed, we evaluate 20
episodes every 200 training epochs and then compute the
average of the highest 5 success rates. We report the mean
and std of success rates across 3 seeds.

B. Efficiency and Effectiveness

DP3 shows surprising efficiency across diverse tasks, mainly
reflected in the following three perspectives:

1) High accuracy. Summarized results are in Figure 1(a)
and results for each domain are in Table I. We observe
that DP3 achieves a success rate 100% in nearly 20
tasks, whereas Diffusion Policy does in around 10 tasks.
Additionally, we observe that Diffusion Policy records
more than 20 tasks with a success rate lower than 30%
given a small set of demonstrations, while DP3 could
generally achieve higher accuracy.

2) Learning efficiency. While we train enough epochs to
guarantee convergence, we observe that DP3 typically
reaches convergence within approximately 500 epochs
across all tasks, as illustrated in Figure 5. In contrast,
Diffusion Policy tends to converge at a much slower

pace or converge into sub-optimal results.
3) Efficient scaling with demonstrations. As shown in

Figure 6, we find that in Adroit tasks, both DP3 and
Diffusion Policy perform reasonably while DP3 achieves
a comparable accuracy with fewer demonstrations. For
MetaWorld tasks above the easy level, Diffusion Pol-
icy fails to learn even with an increased number of
demonstrations, lagging significantly behind DP3. This
underscores that the 3D modality is not just beneficial
but essential for certain manipulation tasks.

4) Competitive inference speed. As depicted in Figure 1,
DP3 achieves an inference speed marginally surpassing
Diffusion Policy. Contrary to the prevailing assumption
that 3D-based policies are slower [61, 83, 73], DP3
manages to achieve efficient inference speeds, primarily
attributed to the utilization of sparse point clouds and
compact 3D representations.

C. Ablations

We select 6 tasks to conduct more ablation studies: Hammer
(H), Door (D), Pen (P) from Adroit and Assembly (A), Disas-
semble (DA), Stick-Push (SP) from MetaWorld. These tasks
include both high-dimensional and low-dimensional control
tasks, and each task only uses 10 demonstrations. We use the
abbreviations of these tasks in the tables for simplicity.

Choice of 3D representations. In DP3, we deliberately
select point clouds to represent the 3D scene. To compare
different choices of 3D representations, we implement other
3D representations, including RGB-D, depth, and voxel. The
RGB-D and depth images are processed using the same image
encoder as Diffusion Policy, while voxel representations em-
ploy the VoxelCNN, as implemented in [7]. As demonstrated
in Table IV, these alternative 3D representations fall short of
DP3. Notably, RGB-D and depth images are very close and not
comparable to point clouds, indicating that the proper usage
of depth information is essential.
TABLE IV: Ablation on 3D representations. We replace the
visual observation and the corresponding encoder in DP3 to
evaluate different 3D representations.

Repr. H D P A DA SP Average

Point cloud 100±0 62±4 43±6 99±1 69±4 97±4 78.3
Image 48±17 50±5 25±4 15±1 43±7 63±3 40.7
Depth 39±15 49±1 12±3 15±4 15±2 62±3 32.0
RGB-D 57±14 47±5 14±2 15±3 14±1 61±3 34.7
Voxel 54±5 33±3 18±2 10±2 17±1 62±6 32.3

Choice of point cloud encoders. We compare DP3
Encoder with other widely used point encoders, including
PointNet [43], PointNet++ [44], PointNeXt [47], and Point
Transformer [85]. We also include the pre-trained models of
PointNet++ and PointNeXt. Surprisingly, we find that none of
these complex models and the pre-trained ones are competitive
to DP3 Encoder, as shown in Table V.

Gradually modifying a PointNet. To elucidate the perfor-
mance disparity between DP3 Encoder and a commonly used
point cloud encoder, e.g., PointNet, we gradually modify a
PointNet to make it aligned with a DP3 Encoder. Through
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Fig. 5: Learning efficiency. We sample 12 simulation tasks and show the learning curves of DP3 and Diffusion Policy. DP3
demonstrates a rapid convergence towards high accuracy. In contrast, Diffusion Policy exhibits a slower learning progress and
achieves notably lower convergence in most tasks.
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Fig. 6: Efficient scaling with demonstrations. We sample 10 simulation tasks and train DP3 and Diffusion Policy with
an increasing number of demonstrations. DP3 addresses all these tasks well and generally improves the accuracy with more
demonstrations. Diffusion Policy also scales well on some tasks while still falling short of accuracy.

TABLE V: Ablation on point cloud encoders. We replace
DP3 Encoder with other widely used encoders, including
PointNet [43], PointNet++ [44], PointNeXt [47], and Point
Transformer [85]. We also include the pre-trained encoders.

Encoders H D P A DA SP Average

DP3 Encoder 100±0 62±4 43±6 99±1 69±4 97±4 78.3
PointNet 46±8 34±8 14±4 0±0 0±0 0±0 15.7
PointNet++ 0±0 0±0 13±3 0±0 0±0 0±0 2.2
PointNeXt 0±0 0±0 14±3 0±0 0±0 0±0 2.3
Point Transformer 0±0 0±0 6±5 0±0 0±0 0±0 1.0
PointNet++ (pre-trained) 5±9 19±12 17±6 0±0 0±0 0±0 6.8
PointNeXt (pre-trained) 0±0 36±13 17±6 0±0 0±0 0±0 8.8

extensive experiments shown in Table VI, we identify that the
T-Net and BatchNorm layers in PointNet are primary inhibitors
to its efficiency. By omitting these two elements, PointNet
attains an average success rate of 72.3, competitive to 78.3
achieved by our DP3 Encoder.One plausible explanation for
the T-Net is that our control tasks use the fixed camera and
do not require feature transformations from the T-Net. Further
replacing high-dimensional features with a lower-dimensional
one would not hurt the performance much (72.5 → 72.3)
but increase the speed. We would explore the reason for the
failures of other encoders in the future.

Design choices in DP3. Besides the 3D representations, the
effectiveness of DP3 is contributed by several small design
choices, as shown in Table VII. (a) Cropping point clouds
helps largely improve accuracy; (b) Incorporating LayerNorm
layers could help stabilize training across different tasks [23,
4]; (c) Sample prediction in the noise sampler brings faster

TABLE VI: Gradually modifying a PointNet to a DP3-
style encoder. Conv: use convolutional layers or linear layers.
w/ T-Net: with or without T-Net. w/ BN: with or without
BacthNorm layers. 1024 Dim: set feature dimensions before
the projection layer to be 1024 or 256. Average success rates
for 6 ablation tasks are reported.

Encoders Conv w/ T-Net w/ BN 1024 Dim Average

PointNet ! ! ! ! 15.7

% ! ! ! 15.7

! % ! ! 16.0

% % ! ! 26.0

% ! ! % 18.2

Turnaroud! ! % % ! 72.5

% % ! % 19.8

% ! % % 26.8

% % % % 72.3

convergence, also shown in Figure 7; (d) The projection head
in DP3 Encoder accelerates the inference by projecting fea-
tures to the lower dimension, without hurting accuracy; (e) Re-
moving color channels ensures robust appearance generaliza-
tion; (f) In low-dimensional control tasks, DPM-solver++ [34]
as the noise sampler is competitive to DDIM, while DPM-
solver++ could not handle high-dimensional control tasks well
empirically.



TABLE VII: Ablation on design choices in DP3. Most of the
design choices would not affect the accuracy but bring other
benefits such as appearance generalization by removing color.

Designs H D P A DA SP Average

DP3 100±0 62±4 43±6 99±1 69±4 97±4 78.3
w/o cropping 98±1 69±3 14±1 19±9 32±6 40±2 45.3
w/o LayerNorm 100±0 56±4 44±3 96±2 51±3 91±5 73.0
w/o sample pred 68±3 67±8 37±12 96±2 58±9 76±9 67.0
w/o projection 100±0 61±2 47±3 99±1 60±8 99±2 77.7
w/ color 100±1 67±3 46±4 76±8 75±5 68±3 72.0
DDIM→DPM-solver++ 12±4 9±5 26±5 93±3 58±6 92±14 48.3
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Fig. 7: Learning curves of DP3 with sample prediction and
epsilon prediction. With sample prediction, DP3 generally
converges faster, while epsilon prediction is also competitive.

V. REAL WORLD EXPERIMENTS

A. Experiment Setup

Real robot benchmark. DP3 is evaluated across 4 tasks on
2 different robots, including an Allegro hand and a gripper. We
use one RealSense L515 camera to obtain real-world visual
observations. All the tasks are visualized in Figure 10 and
summarized in Table III. Our real-world setup and everyday
objects used in our tasks are shown in Figure 8. We now briefly
describe our tasks:

1) Roll-Up. The Allegro hand wraps the plasticine multiple
times to make a roll-up.

2) Dumpling. The Allegro hand first wraps the plasticine
and then pinchs it to make dumpling pleats.

3) Drill. The Allegro hand grasps the drill up and moves
towards the green cube to touch the cube with the drill.

4) Pour. The gripper grasps the bowl, moves towards the
plasticine, pours out the dried meat floss in the bowl,
and places the bowl on the table.

The randomization in each task is shown in Figure 9. For Roll-
Up and Dumpling, the plasticine’s shape and the appearance
of the objects placed upon the plasticine are randomized. For
Drill and Pour, the variations come from the random positions
of the cube, drill, and bowl.

Notably, our tasks using the multi-finger hand are carefully
designed to show its advantage over the parallel gripper: In
Roll-Up and Dumpling, robots could wrap plasticine without
requiring extra tools, unlike RoboCook [60]; In Drill, the drill
in the real world is large and heavy, which is quite difficult
for the gripper to grasp.

Expert demonstrations are collected by human teleoper-
ation. The Franka arm and the gripper are teleoperated by
the keyboard. The Allegro hand is teleoperated with human

RealSense
L515

Allegro Hand

Franka Arm

(a) Robots and objects used in DP3.

(b) Real-world experiment setup.
Fig. 8: (a) Our robots and objects. (b) Our real-world
experiment setup. We use an Allegro hand and a gripper
based on Franka arms and include diverse everyday objects in
our manipulation tasks. A RealSense L515 camera is applied
to capture visual observations.

hands by vision-based retargeting [49, 18]. Since our tasks
contain more than one stage and include complex multi-
finger robots and deformable objects, making the process
of demonstration collection very time-consuming, we only
provide 40 demonstrations for each task.

Baselines. Based on our simulation experiments, image-
based and depth-based diffusion policies are still powerful,
thus we select them as baselines for real-world experiments.
Different vision modalities are visualized in Figure 11.

B. Effectiveness

Results for our real robot tasks are given in Table VIII.
Consistent with our simulation findings, we observe in real-
world experiments that DP3 could handle all tasks with high
success rates, given only 40 demonstrations. Interestingly, we
also observe that while both image-based and depth-based
diffusion policies have comparatively low average accuracies,
they exhibit distinct strengths in specific tasks. For instance,
the image-based diffusion policy excels in the Drill task but
fails entirely in Roll-Up. In contrast, the depth-based policy
achieves a notable success rate of 40% in Roll-Up.

C. Generalization

Besides the effectiveness in handling all tasks, DP3 show
strong generalization abilities in the real world. We categorize



(a) Roll-Up & Dumpling: randomized shapes and appearances

(b) Drill & Pour: randomized object positions
Fig. 9: Randomization in collected demonstrations for real-
world tasks. Roll-Up: The shape of the plasticine and the
vegetables on it varies in each trajectory. Dumpling: The shape
of the plasticine and the distribution of the meat floss on it are
different in each trajectory. Drill: The red and blue rectangles
respectively mark the range of positions where the cube and
drill can be placed. Pour: The green rectangle marks the range
of positions of the bowl.TABLE VIII: Main results for real robot experiments. Each
task is evaluated with 10 trials.

Real Robot Roll-Up Dumpling Drill Pour Average

Diffusion Policy 0 30 70 40 35.0±25.0

Diffusion Policy (Depth) 40 20 10 10 20.0±12.2

DP3 90 70 80 100 85.0±11.2

the generalization abilities of DP3 into 4 aspects and detail
each aspect as follows.

Spatial generalization. As illustrated in our motivating
example, DP3 could better extrapolate in 3D space. We
demonstrate this property in the real world, as shown in
Table IX. We find that baselines fail to generalize to all test
positions while DP3 succeed in 4 out of 5 trials.

TABLE IX: Spatial generalization on Pour. We place the
bowl at 5 different positions that are unseen in the training
data. Each position is evaluated with one trial.

train

test

𝟏𝟐

𝟑

𝟒
𝟓

Spatial Generalization 1 2 3 4 5

Diffusion Policy % % % % %

Diffusion Policy (Depth) % % % % %

DP3 % ! ! ! !

Appearance generalization. DP3 is designed to process
point clouds without color information, inherently enabling
it to generalize across various appearances effectively. As
demonstrated in Table X, DP3 consistently exhibits successful
generalization to cubes of differing colors, while baseline
methods could not achieve. It is noteworthy that the depth-
based diffusion policy also does not incorporate color as input.
However, due to its lower accuracy on the training object, the
ability to generalize is also limited.

One solution to improve the appearance generalization abil-
ity of image-based methods is applying strong data augmen-
tation during training [21, 20], which however could impede
the learning process [80, 20]. More importantly, the primary
objective of this work is to demonstrate that DP3, even without
the aid of any data augmentation, can effectively generalize,
thereby underscoring the potential of 3D representations in
real robot learning.

TABLE X: Appearance generalization on Drill. Algorithms
are trained with the green cube only and evaluated on 5
different colored cubes. Each color is evaluated with one trial.

Apperance Generalization (■) ■ ■ ■ ■ ■

Diffusion Policy % % % % %

Diffusion Policy (Depth) % % % % %

DP3 ! ! ! ! !

Instance generalization. Achieving generalization across
diverse instances, which vary in shape, size, and appearance,
presents a significantly greater challenge compared to mere
appearance generalization. In Table XI, we demonstrate that
DP3 effectively manages a wide range of everyday objects.
This success can be primarily attributed to the inherent
characteristics of point clouds. Specifically, the use of point
clouds allows for policies that are less prone to confusion,
particularly when these point clouds are downsampled. This
feature significantly enhances the model’s ability to adapt to
varied instances.
TABLE XI: Instance generalization on Drill. We replace the
cube used in Drill with five objects in varied sizes from our
daily life. Each instance is evaluated with one trial.

Toy Espeon
Mouse

Cup Mug

Toy Handsize

Instance Generalization Mouse Espeon Cup Mug Hand

Diffusion Policy % % % % !

Diffusion Policy (Depth) % % ! % %

DP3 ! ! ! ! !

View generalization. Generalizing image-based methods



Task Progress

Roll-Up

Dumpling

Drill

Pour

End State

PinchWrap

Grasp Reach

Pick

Wrap WrapWrap

PlacePour

Fig. 10: Our real robot benchmark consists of 4 challenging tasks. The Allegro hand is required to make a Dumpling, Drill
the cube, and make a Roll-Up. The gripper is required to Pour dried meat floss in the bowl. Each task contains multiple stages.
We visualize the point clouds of the collected trajectories.

(a) RGB and Depth (b) Point Cloud w/ and w/o Color

Fig. 11: Different vision modalities in the real world, include
images, depths, and point clouds.

across different views is notably challenging [76], and acquir-
ing training data from multiple views can be time-consuming
and costly [83, 59]. We demonstrate in Table XII that DP3
effectively addresses this generalization problem when the
camera views are altered slightly. It is important to note that
since the camera view is altered, we manually adjust the
cropped space of the point clouds.

TABLE XII: View generalization on Roll-Up. Each view is
evaluated with one trial.

Training View View 1 View 2 View 3

View Generalization View 1 View 2 View 3

Diffusion Policy % % %

Diffusion Policy (Depth) % % %

DP3 ! ! !

D. Safety Violation

In our real-world experiments, we surprisingly observe that
image-based and depth-based diffusion policies often deliver
unpredictable behaviors, which necessitates human termina-
tion to ensure robot safety. This situation is defined as safety
violation. We compute the safety violation rate in our main
real-world experiments, shown in Table XIII. Interestingly,
DP3 rarely violates the safety, showing that DP3 is a practical
and hardware-friendly method for real robot learning.
TABLE XIII: Safety violation rate. While conducting the
main real-world experiments, we also count the times of safety
violation and compute the rate.

Tangled in a twist

Examples of Safety Violation

Hit the groundHit the ground

Safety Violation Rate ↓ Roll-Up Dumpling Drill Pour Average

Diffusion Policy 90 20 20 0 32.5
Diffusion Policy (Depth) 20 30 30 20 25.0
DP3 0 0 0 0 0.0

VI. CONCLUSION

In this work, we introduce 3D Diffusion Policy (DP3), an
efficient visual imitation learning algorithm, adept at managing
a wide range of robotic tasks in both simulated and real-world
environments with only a small set of demonstrations. The
essence of DP3 lies in its integration of carefully designed 3D
representations with the expressiveness of diffusion policies.



Across 72 simulated tasks, DP3 outperforms its 2D counterpart
by a relative margin of 24.2%. In real-world scenarios, DP3
shows high accuracy in executing complex manipulations of
deformable objects using the Allegro hand. More importantly,
we demonstrate that DP3 possesses robust generalization
capabilities across various aspects and causes fewer safety
violations in real-world scenarios.
Limitations. Though we have developed an efficient archi-
tecture, the optimal 3D representation for control is still yet
discovered. Besides, this work does not delve into tasks with
extremely long horizons, which remains for future exploration.
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APPENDIX

A. Implementation Details

DP3 mainly consists of two parts: perception and decision. We now detail the implementation details of each part as follows.
The official implementation is available on https://github.com/YanjieZe/3D-Diffusion-Policy.
Perception. The input of DP3 includes the visual observation and the robot pose. The visual observation is a point cloud
without colors, downsampled from the raw point cloud using Farthest Point Sampling (FPS). We use 512 or 1024 in all the
simulated and real-world tasks. DP3 encodes the point cloud into a compact representation with our designed DP3 Encoder.
We provide a simple PyTorch implementation of our DP3 Encoder as follows:

class DP3Encoder(nn.Module):
def __init__(self, channels=3):

# We only use xyz (channels=3) in this work
# while our encoder also works for xyzrgb (channels=6) in our experiments
self.mlp = nn.Sequential(

nn.Linear(channels, 64), nn.LayerNorm(64), nn.ReLU(),
nn.Linear(64, 128), nn.LayerNorm(128), nn.ReLU(),
nn.Linear(128, 256), nn.LayerNorm(256), nn.ReLU())

self.projection = nn.Sequential(nn.Linear(256, 64), nn.LayerNorm(64))

def forward(self, x):
# x: B, N, 3
x = self.mlp(x) # B, N, 256
x = torch.max(x, 1)[0] # B, 256
x = self.projection(x) # B, 64
return x

The robot poses are also processed by an MLP network described as follows:

# DimRobo is the dimension of the robot poses.
Sequential(
(0): Linear(in_features=DimRobo, out_features=64, bias=True)
(1): ReLU()
(2): Linear(in_features=64, out_features=64, bias=True))

The representations encoded from point clouds and robot poses are concatenated into one representation of dimension 128.
Afterward, the decision backbone generates actions conditioning on this representation.
Decision. The decision backbone is a convolutional network-based diffusion policy, which transforms random Gaussian noise
into a coherent sequence of actions. For implementation, we utilize the official PyTorch framework available at https://github.
com/real-stanford/diffusion policy). In practice, the model is designed to predict a series of H actions based on Nobs observed
timesteps, but it will only execute the last Nact actions during inference. We set H = 4, Nobs = 2, Nact = 3 for DP3 and
diffusion-based baselines.

The original Diffusion Policy typically employs a longer horizon, primarily due to the denser nature of the timesteps in their
tasks. In Table XIV, we show that there is no significant difference between a short horizon and a long horizon for our tasks.
Moreover, considering the potential for sudden disruptions in real-world robotic operations, we choose to employ a shorter
horizon.
Normalization. We scale the min and max of each action dimension and each observation dimension to [−1, 1] independently.
Normalizing the actions to [−1, 1] is a must for the prediction of DDPM and DDIM since they would clip the prediction to
[−1, 1] for stability.
Baselines. The implementation of baseline methods including Diffusion Policy, IBC, and BCRNN follows https://github.
com/real-stanford/diffusion policy). The implementation of different point encoders follows https://github.com/guochengqian/
openpoints/, and we also adopt the pre-trained encoders from this codebase.

B. Task Suite

Simulated tasks. We collect diverse simulated tasks to systematically evaluate imitation learning algorithms. Our collected tasks
mainly focus on robotic manipulation, including Adroit [50], Bi-DexHands [8], DexArt [5], DexDeform [33], DexMV [48],
HORA [45], and MetaWorld [78]. The full task names could be seen in Table XV. We add the support for 3D modality in
these tasks when the 3D modality is not available originally.
Real-world tasks. The episode length for our real-world tasks is not fixed. Average episode lengths for demonstrations of each
task are listed as follows: (1) 79.9 for Roll-Up; (2) 113.5 for Dumpling; (3) 71.4 for Drill; and (4) 83.6 for Pour. During the
evaluation of the policy, we stop the robot when we find (1) the policy finishes the task; (2) the policy can not successfully
handle the task; and (3) the policy makes behaviors that are harmful to the hardware.

https://github.com/YanjieZe/3D-Diffusion-Policy
https://github.com/real-stanford/diffusion_policy)
https://github.com/real-stanford/diffusion_policy)
https://github.com/real-stanford/diffusion_policy)
https://github.com/real-stanford/diffusion_policy)
https://github.com/guochengqian/openpoints/
https://github.com/guochengqian/openpoints/


C. More Simulation Experiments

Simulation results for each task. We give the simulation results for each task in Table XV, which is supplementary to Table I
in our main paper. We report average success rates across 3 seeds. For HORA, we report the normalized returns since this
task is doing in-hand rotation and is not measured by success rates.
Success rates for experts. In our simulated tasks, we apply Reinforcement Learning (RL)-trained agents to generate
demonstrations. These expert policies are rigorously evaluated over 200 episodes, and their success rates are detailed in
Table XVI. For MetaWorld tasks, we present results from scripted policies.
Choice of prediction horizon. DP3 applies a short action prediction and execution horizon H = 4, Nact = 3, and so does
the baseline Diffusion Policy. This is mainly designed for the generality of DP3 in complex tasks and real robot tasks, where
the environment would be changed by human intervention and the policy needs to switch action immediately. As shown in
Table XIV, a shortened prediction horizon is competitive with a longer one.
TABLE XIV: Ablation on prediction horizon. In this work, DP3 and Diffusion Policy uses a prediction horizon H =
4, Nact = 3. We test H = 16, Nact = 8 originally used in [10] for both methods.

Algorithm H D P A DA SP Average

DP3 100±0 62±4 43±6 99±1 69±4 97±4 78.3
w/ long horizon 100±0 64±5 46±3 99±1 75±3 85±14 78.2

Diffusion Policy 48±17 50±5 25±4 15±1 43±7 63±3 40.7
w/ long horizon 68±11 44±4 16±2 12±3 14±1 44±5 33.0

TABLE XV: Main results on 72 simulation tasks. Results for each task are provided in this table. A summary across domains
is shown in Table I.

Adroit [50] Bi-DexHands [8]
Alg \ Task Hammer Door Pen Block Stack Bottle Cap Door Open Outward Grasp And Place Hand Over Scissors

DP3 100±0 62±4 43±6 24±15 83±10 100±0 69±22 45±8 100±0

Diffusion Policy 45±5 37±2 13±2 4±4 61±5 100±0 65±9 38±0 100±0

DexArt [5] DexDeform [33] DexMV [48] HORA [45]
Alg \ Task Laptop Faucet Toilet Bucket Rope Bun Dumpling Wrap Flip Folding Pour Place Inside Rotation

DP3 83±1 63±2 82±4 46±2 93±2 70±9 92±0 94±0 97±1 81±2 99±2 100±0 71±31

Diffusion Policy 69±4 23±8 58±2 46±1 97±0 76±4 92±0 91±0 99±0 88±1 90±2 100±0 49±11

Meta-World [78] (Easy)
Alg \ Task Button Press Button Press Topdown Button Press Topdown Wall Button Press Wall Coffee Button Dial Turn Door Close

DP3 100±0 100±0 99±2 99±1 100±0 66±1 100±0

Diffusion Policy 99±1 98±1 96±3 97±3 99±1 63±10 100±0

Meta-World (Easy)
Alg \ Task Door Lock Door Open Door Unlock Drawer Close Drawer Open Faucet Close Faucet Open Handle Press Handle Pull

DP3 98±2 99±1 100±0 100±0 100±0 100±0 100±0 100±0 53±11

Diffusion Policy 86±8 98±3 98±3 100±0 93±3 100±0 100±0 81±4 27±22

Meta-World (Easy)
Alg \ Task Handle Press Side Handle Pull Side Lever Pull Plate Slide Plate Slide Back Plate Slide Back Side Plate Slide Side Reach

DP3 100±0 85±3 79±8 100±1 99±0 100±0 100±0 24±1

Diffusion Policy 100±0 23±17 49±5 83±4 99±0 100±0 100±0 18±2

Meta-World (Easy) Meta-World (Medium)
Alg \ Task Reach Wall Window Close Window Open Peg Unplug Side Basketball Bin Picking Box Close Coffee Pull Coffee Push

DP3 68±3 100±0 100±0 75±5 98±2 34±30 42±3 87±3 94±3

Diffusion Policy 59±7 100±0 100±0 74±3 85±6 15±4 30±5 34±7 67±4

Meta-World (Medium) Meta-World (Hard)
Alg \ Task Hammer Peg Insert Side Push Wall Soccer Sweep Sweep Into Assembly Hand Insert Pick Out of Hole Pick Place

DP3 76±4 69±7 49±8 18±3 96±3 15±5 99±1 14±4 14±9 12±4

Diffusion Policy 15±6 34±7 20±3 14±4 18±8 10±4 15±1 9±2 0±0 0±0

Meta-World (Hard) Meta-World (Very Hard) AverageAlg \ Task Push Push Back Shelf Place Disassemble Stick Pull Stick Push Pick Place Wall

DP3 51±3 0±0 17±10 69±4 27±8 97±4 35±8 74.4
Diffusion Policy 30±3 0±0 11±3 43±7 11±2 63±3 5±1 59.8

D. Simple DP3



TABLE XVI: Success rates of experts on 72 simulation tasks. We evaluate 200 episodes for each task. For MetaWorld tasks,
we evaluate both BAC agents and the script policies provided officially in MetaWorld. For DexDeform tasks, the demonstrations
are collected by human teleportation [33] and we record the success rates as 100%.

Adroit [50] Bi-DexHands [8]
Alg \ Task Hammer Door Pen Block Stack Bottle Cap Door Open Outward Grasp And Place Hand Over Scissors

Expert 99.0 100.0 97.0 83.5 100.0 100.0 100.0 77.0 99.5

DexArt [5] DexDeform [33] DexMV [48] HORA [45]
Alg \ Task Laptop Faucet Toilet Bucket Rope Bun Dumpling Wrap Flip Folding Pour Place Inside Rotation

Expert 86.5 58.0 66.5 80.0 100.0 100.0 100.0 100.0 100.0 100.0 88.5 64.5 80.5

Meta-World [78] (Easy)
Alg \ Task Button Press Button Press Topdown Button Press Topdown Wall Button Press Wall Coffee Button Dial Turn Door Close

Expert 100.0 100.0 100.0 98.5 100.0 100.0 100.0

Meta-World (Easy)
Alg \ Task Door Lock Door Open Door Unlock Drawer Close Drawer Open Faucet Close Faucet Open Handle Press Handle Pull

Expert 100.0 98.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Meta-World (Easy)
Alg \ Task Handle Press Side Handle Pull Side Lever Pull Plate Slide Plate Slide Back Plate Slide Back Side Plate Slide Side Reach

Expert 100.0 100.0 98.5 100.0 100.0 100.0 100.0 100.0

Meta-World (Easy) Meta-World (Medium)
Alg \ Task Reach Wall Window Close Window Open Peg Unplug Side Basketball Bin Picking Box Close Coffee Pull Coffee Push

Expert 100.0 100.0 100.0 99.0 100.0 97.0 90.0 100.0 100.0

Meta-World (Medium) Meta-World (Hard)
Alg \ Task Hammer Peg Insert Side Push Wall Soccer Sweep Sweep Into Assembly Hand Insert Pick Out of Hole Pick Place

Expert 100.0 92.0 100.0 90.5 100.0 90.0 100.0 100.0 100.0 100.0

Meta-World (Hard) Meta-World (Very Hard)
Alg \ Task Push Push Back Shelf Place Disassemble Stick Pull Stick Push Pick Place Wall

Expert 100.0 0.0 99.5 92.5 95.0 100.0 99.5
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To enhance the applicability of DP3 in real-world robot learning, we simplify
the policy backbone of DP3, which is identified as one critical factor that
impacts inference speed. The refined version, dubbed Simple DP3, offers 2x
inference speed while maintaining high accuracy, as shown in Table XVII.
The efficiency stems from removing the redundant components in the UNet
backbone. The implementation of Simple DP3 is available on https://github.
com/YanjieZe/3D-Diffusion-Policy.

TABLE XVII: Results of Simple DP3. Compared to DP3, Simple DP3 achieves nearly 2x inference speed without losing
much accuracy. Full evaluation results are given in Table XVIII.

Algorithm Diffusion Policy DP3 Simple DP3

Inference Speed (FPS) 12.3 12.7 25.3 (↑ 99%)
Accuracy (Avg Success) 44.0 74.4 70.2 (↓ 6%)

TABLE XVIII: Full evaluation results of Simple DP3. We evaluate Simple DP3 on 10 tasks and compare it with DP3 and
find that Simple DP3 could achieve results very competitive to DP3.

Adroit MetaWorld DexArt
Algorithm \ Task Hammer Door Pen Assembly Disassemble Stick-Push Laptop Faucet Toilet Bucket Average

DP3 100±0 62±4 43±6 99±1 69±4 97±4 83±1 63±2 82±4 46±2 74.4
Diffusion Policy 48±17 50±5 25±4 15±1 43±7 63±3 69±4 23±8 58±2 46±1 44.0
Simple DP3 100±0 58±4 46±5 79±1 50±3 97±5 84±2 63±3 81±6 44±6 70.2

https://github.com/YanjieZe/3D-Diffusion-Policy
https://github.com/YanjieZe/3D-Diffusion-Policy
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